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AIlatraet-A stress resultant finite element formulation is developed for the dynamic plastic analysis of
plates and sheDs of revolution undergoing moderate deformation. A nonlinear elastic-viscoplastic constitu
tive relation simulates the behavior of rate-sensitiv~ and ·insensitive materials. A local time step subdivision
procedure is developed to stabilize the direct numerical integration of the system of nonlinear dynamic
equations; satisfactory accuracy is obtained with large time steps. The simple nonlinear viscoplastic
constitutive model approximates the nonlinear dynamic behavior of metals over a wide range of strain rates
and has the advantage that the need to identify the state of the material during deformation is eliminated
and the numerical algorithm thereby simplified. Direct step-by-step integration techniques are used to solve
the system of equations governing the motion of a structure under dynamic loading. An implicit Runge
Kutta scheme in conjunction with a Newton-Raphson iteration technique is used in solving systems of first
order ordinary differential equations.

I. INTRODUCTION

The dynamic plastic analysis of structures and continua is a topic undergoing intense develop
ment at the present time, stimulated by the need to design structures and components in nuclear
power plants against internal accident or external impact, and ductile structures against major
earthquakes. Research in this area has been primarily in developing large finite element
programs in which eq!J3.tions of motion and constitutive equations of plasticity are integrated
using certain well-established numerical techniques. When substantial plastic deformation is
involved, the cost and storage requirements of such programs can be prohibitive in the initial
design phase, primarily due to difficulties in locating the regions of yielding and in verifying at
each point and at each time whether loading or unloading is occurring. An approach affording
considerable reduction in computer time and storage is proposed here. The approach is based
on a modeling of plastic response in which the need to locate the yielded region and to verify
whether loading or unloading is occurring is eliminated. A further simplification of the method
when applied to structures composed of rods, beams, plates, or shells is achieved by formUlat
ing the yield conditions in stress resultants rather than in stresses, thereby eliminating the need
to integrate stress components through the element thickness. The development of this
approach to dynamic plastic analysis was motivated by recent research on the utilization of
energy-absorbing devices in aseismic design. Since these devices experience substantial plastic
deformation and the type currently under study operates in combined torsion and bending, the
stress resultant formulation proposed here is highly useful.

The stress resultant finite element formulation proposed herein is developed for the dynamic
plastic analysis of plates and shells of revolution undergoing moderate deformation. A nonlinear
elastic viscoplastic constitutive relation simulates the behavior of rate-sensitive and -insensitive
materials. A local time step SUbdivision procedure is developed to stabilize the direct numerical
integration of the system of nonlinear dynamic equations; satisfactory accuracy is obtained with
large time steps.

The principle of virtual work and a finite element discretization technique are used to
establish a general finite element displacement formulation for the analysis of structures
undergoing large deformation. Two solution approaches are suggested: (I) a current state
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formulation in which nonlinear effects are separated, and (2) an incremental formulation. These
methods are then specialized to problems of thin plates and shells of revolution subjected to
axisymmetric loading and undergoing moderate deformation by employing the Kirchhoff-Love
kinematic assumptions and assuming that the material is elastic-perfectly viscoplastic and obeys
the von Mises flow condition. Direct step-by-step integration techniques are used to solve the
system of equations governing the motion of a structure under dynamic loading. An implicit
Runge-Kutta scheme in conjunction with a Newton-Raphson iteration technique is used in
solving systems of first order ordinary differential equations.

2. CONSTITUTIVE RELATIONS FOR ELASTlC-VISCOPLASTIC MATERIALS

Only problems in which moderate deformation with small rotations occur will be consi
dered. Therefore, the influence of rotations on constitutive relations is ignored for simplicity
and infinitesimal constitutive theory is employed. The error thus introduced is believed to be
negligible for practical purposes.

Numerous constitutive theories of elastic-viscoplastic materials for small deformation have
been developed [1-8]. Sokolovsky[l] introduced a linear viscoplastic law in which the total strain
rate i is assumed to be composed of an elastic part i' given by Hooke's Law and a viscoplastic
part i P which is proportional to an overstress. A general relation was proposed by MaIvem[2]
in which the plastic strain rate is assumed to be some function of the current stress and strain.
Dislocation theories have been used to develop constitutive models [3, 4]. One such model,
suggested by Gilman [4], is taken as the basis of the present development and has the form:

(2.1)

where T, nand 0'0 are material constants (0'0 is usually taken as the static yield stress), and 0' is
the actual stress.

By superposing the elastic part we have the complete constitutive relation:

u . 110' In .-=: E-- - sign (0')
E T 0'0

(2.2)

. {I for 0' > 0 dE' Y , uI F . 1 ad'where sIgn (0'):= 1 f 0' an IS oung s mod us. or constant stram rate o. mg, an
- or 0' <

asymptotic stress termed the dynamic yield stress Ud exists and is given by

(2.3)

Constitutive relations for elastic-viscoplastic materials under multiaxialdeformation have
been developed by Perzyna[5,6] who again assumed that the total strain rate iii consists of an
elastic part iij and an inelastic part i~. Perzyna's theory assumes the existence of an initial
yield surface beyond which viscoplastic flow occurs, the rate of increase of the viscoplastic
strain components being a function of the extent to which the stress state exceeds the static
yield criterion. Due to these assumptions, it is difficult to generalize one-dimensional viscoplas
tic models with no definite yield surface to muitiaxial deformation using this theory. This
difficulty is overcome by using a scalar flow potential O(u, history) such that:

.p aO(u, history)
E" =:

II dUii
(2.4)

where u is the stress tensor. Examples of such constitutive models and their implications have
been explored by Kelly and Gillis [3]. The following flow potential for nonhardening materials is
used to generalize the one-dimensional theory:

(2.5)
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where c is a material constant and /(0') equals 10, a constant corresponding to the flow surface
for static yielding. Thus

i.f. = ~*(f(O'»)n d/(O')
I 10 dUij

(2.6)

where ~* = c(n + 1)/10' The complete constitutive relation is obtained by superposing the elastic
part and inverting the resulting expression:

(2.7a)

where

0' =(UllU22U330'12UnU31)

E =(€11€22E33EI2EnE31)

De - matrix of elasticity constants,

and

For a von Mises type flow function,

_ (1 )112
1(0') =V12(s) = "2 SijSij

and the nonlinear stress rate a(") simplifies to

(2.7b)

(2.7c)

(2.7d)

where s =(SIlS22S33S12SnS3IV is the deviatoric stress vector, k is the static yield stress in simple
shear, and ~ = ~*/2. For uniaxial tension the constitutive relation (2.7) reduces to:

0'/E =i. - (2f;3/V3)(u/uo)".

The constitutive model (2.7) describes all phases of deformation (elastic and elastic
viscoplastic, loading and unloading) in a smooth fashion and can be used to approximate
elastic-perfectly plastic behavior in the limit as n approaches infinityt as suggested by
Kelly[IO]. Thus, there is no need to check loading or unloading processes nor to identify the
state of the material during deformation when this constitutive model is incorporated in a
numerical scheme, an advantage over models that assume a definite yield surface.

3. FINITE ELEMENT FORMULATION

The principle of virtual work[11, 12] and a finite element discretization are used to derive
the following equations of motion[9]:

(3.1)

where M is the mass matrix. *q(l) is the global nodal point acceleration vector, *a is the
external force vector, kb is the equivalent nodal force vector, the superscript "k" denotes the
current state, and I denotes the time parameter. The nodal forces are given by

where kO' is as defined earlier, and B(x, kq) is the virtual global displacement· 'irtual stram

tIn practice. a value of 25 or greater for n provides satisfactory results [91.
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(3.3)

in which k8E = (k8Ellk8E2l8E332k8EI22k8E232k8E31)T is the vector of virtual Green strains, and
the integral is carried over the original volume of the structure.

The equations of motion (3.1), the nodal force equations (3.2) together with appropriate
constitutive relations and initial and boundary conditions constitute the system of equations
governing the response of the finite element model. This type of formulation has been discussed
by Argyris et al. [13] and Lukkunaprasit[9].

Incremental equations of motion
Of the numerous incremental methods available for solving nonlinear problems{l+'16J, a

convenient approach is one in which the equations of motion (3.1) in a state "k + 1" at time
t + fJ.t are expressed in terms of the adjacent state "k" at time t and the incremental
quantities [9]:

(3.4)
where

(3.5a)

Higher order terms are neglected in (3.5a). For elastic-viscoplastic materials with constitutive
relations given by (2.7) the incremental nodal force b is:

(3.5b)

where K is the incremental stiffness matrix given by

(3.5c)

and

(3.5d)

Due to the highly nonlinear nature of the material, the state (k+lq, k+I U ) as obtained from
one application of the incremental equations may not adequately satisfy the equations of
motion (3.1). Therefore an iterative incremental procedure is adopted wherein the incremental
equations of motion (3.4) are applied to the updated state, where k now denotes the updated
state, q is the incremental displacement between two consecutive iterations, and 11(11) is modified
to fJ.bln ):

fJ.b(nl = f BT{qlnl(**u) - q(nl(*u)}M dV
Vo

(3.6)

in which *u and **u are stress states within the time increment[9].
In our numerical scheme we neglect the term fJ.b(n\ which is acceptable provided that we

iterate until convergence is achieved. Then, k+IR - Miij - ib approaches zero as Hi" approaches
k + 1, and the equations of motion (3.1) are satisfied.

Application to thin shells of revolution under axisymmetric loading
The theory described above will now be applied to thin plates and shells of revolution under

torsionless axisymmetric loading. For simplicity we employ the conical frustum element[17]
slightly modified to improve membrane characteristics. Figure 1 shows such an element
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Fig. I. Element geometry. (a) Conical frustum element--seometry and coordinate systems. (b) Midsurface
nodal displacements in global toordinates.

together with the local physical coordinates (71, f), the local normalized coordinates (s, (), and
the global coordinates (r, z). By adopting the Kirchhoff-Love hypothesis[l8] the current
meridional and normal displacement fields cail be expressed in terms of those of the middle
surface UO(71), WO(71) as follows:

u( 71, e) =Uo( 71) - ewo, ,,(71)

W(71,e) = WO(71).
(3.7)

The normal and in-plane displacement fields will be given by a cubic and quadratic represen
tation, respectively:

where

uO(s) =s(s - 1)/2uj +(1 +s)(1- S)uo +s(s +1)/2u,

wOes) =,f1J(s)Wj + l/I2(s)w, + f/!J(s)8j + 1/14(S)(J,

I/II(S) =0.5 - 0.75s +0.25s3

l/I2(s) = 0.5 +0.75s - 0.25s3

f/!J(s) = L(1- s - S2 +s3)/8

I/Iis) = L(-I- s +S2+ s3)/8

(3.8)

L is the length of the element, Uj, Wj and 8j are respectively the meridional, normal displace-
Ul (j) (j)

ment, and rotation of node "i", and Uo is the meridional displacement of the center node "0".W .
Due to axisymmetry of geometry and loading and the kinematic assumptions, the nonzero strain
components are the meridional and circumferential strain components given, respectively, by:

k - 1 2
E,,~ - u,.., +2 w,..,

(3.9)
kE" = (U cos <I> + W sin <I»/r

where t/J is the angle defining the element inclination (Fig. 1). We can easily deduce the
strain-nodal displacement relations from local-global coordinate transformation [I9]:

kE~(S, e, kq)=i (t/J)l}q +~ kqT(t/J)/(t/Jhkq - e(iy(t/Jh....kq.

kE,,(s, e, kq) =1[(t/J). cos <I> + (t/Jh sin <I> - e(t/J)3 cos <l>tqr
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(A..) (S(S - I) s(S - 1) . S(s + 1) s(s + l) . )
'1'1 = --2-cos <I>'---Z-sm <I>,O,--Z-cos <1>, ---2-sm<l>,0, 1- Sz

(<Ph = (I/II(S) sin <1>, I/Il(S) cos <1>, I/IJ<s), I/Iz(s) sin <1>, !/Jz(s) cos <1>, I/Ib), 0)

2
(<Ph = I (<Phs

k (- - - - - - )Tq = Ui, Wi, 8i, Uj, Wi> 8j, Uo

is the vector of nodal displacements in global coordinates. Finally, by writing the above in
terms of virtual quantities, we obtain:

(

2/L)(<P)I .• + kqT(<p)-/(iflh) (4/L Z)(<P)2.SS)
B(5,~, kq) = (ifI)1 cos <1>; (<Ph sin <I> - g\ (<Ph ~os <I>

== B(\)(s, kq) + ~B(2)(s) (3.10)

which is the matrix needed to evaluate the incremental stiffness matrix. The rates of strains and
displacements are also related by the p matrix:

(3.11)

4. FORMULATION IN TERMS OF STRESS RESULTANTS

We now introduce (3.10) into (3.2) to obtain the nodal force-internal stress resultant
relations:

(4.1)

in which

d is the element thickness. and rO(s) has been used in place of r(s,~) by the assumption of thin

shells.
By virtue of the constitutive equations (2.7) and the rate of strain-displacement relations

(3.11) the rates of the meridional and circumferential moment resultants. kMT/"f/ and kM9(J. at a
section 1/ are given by

(4.2)

where
Co = E/3/[y'30'o(l + v)],

and

(4.3)

The integrals in (4.2) involve nonlinear functions of the stresses which in turn are given by
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nonlinear differential equations (2.7) and cannot be carried out explicitly. Our aim is to develop
approximate expressions for these integrals. To do so, let us consider an elastic-.,erfectly
plastic material. Theoretically, n tends to infinity for such a material. Prior to yielding, the
function 1/2 kS/ Sji is less than the yield value k2 at every point over the cross section, so that

Ilks kS 1(11-1)/2
~k

and the integrals vanish in the limit as n tends to infinity.
Next, suppose that the section just reaches the limit (or plastic collapse) state, and thus that

the yield condition 1/2 kSji kSji =k2 is satisfied everywhere across the section. At this state, the
yield condition in the stress resultant space can be derived [201 and symbolically represented by

(4.4)

where kn =kNI No; km =kMJMo; No =(fod; and Mo=(fod2/4.
The local yield condition is replaced by the yield condition in the stress resultant space;

thus,

II k k I2 ~~Sii

may by replaced by

so that (4.2) becomes

or in normalized form

(4.5a)
in which

and

Equations (4.5a) are also valid at incipient yielding and will be adopted as interpolation
functions, as shown schematically in Fig. 2 for one-dimensional bending of a beam section.

By the same procedure we arrive at the constitutive relations for the in-plane stress
resultants:

(4.5b)
where

and

The foregoing treatment can be extended to the elastic-viscoplastic case- by assuming that a
viscoplastic collapse state exists for which the function 1/2 kSij kSij takes on a value of ki
throughout the cross section, where kd is the dynamic yield value. The corresponding yield
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Fig. 2. Approximation of the actual elastic-plastic moment-curvature relation in beam bending,

surface in the stress resultant space is

f k k (kd)2
,( 0, m)= k . (4.6)

The function 1/2 kS/ Silk2 in eqns (4.2) is then replaced by (y(k O, km) and the results are again
eqns (4.5) but, of course, with different material constants than for 'the previous case. As
before, eqns (4.5) are adopted as interpolation functions for intermediate states. It should be
noted that in the stress resultant formulation only the value ofthe yield function fy(k O, km) need
be known. The flow condition has been incorporated in the constitutive relations for the stress
components.

The yield condition in terms of stress resultants was first obtained by lIyushin{21] in a
parametric representation for the general thin shell obeying the von Mises yield criterion.
Several cases where this relation could be expressed explicitly as a function of stress resultants
were also given. By using the flow theory of plasticity, exact yield conditions for rotationally
symmetric shells were derived by Onat and Prager[22] for Tresca materials and by Hodge[23]
for von Mises yield criterion. Due to the complexity of these yield conditions, simplifying
methods were introduced to obtain an approximate yield condition that was computationally
manageable. Hodge [23, 24] replaced the uniform shell by an idealized sandwich shell. Ap
proximations for the Tresca condition have been proposed by Flugge and Nakamura[25],
Hodge [26] and others. Robinson [27] adopted the following yield conditions obtained by
Ilyushin [21] for special cases as approximations to the whole yield surface, and obtained bounds
for the collapse load associated with each case:

Y t: 12(0) +1~m) = 1; 0.955 Po:S Pt:S 1.155 Po

Y2: 12(m) = [1- J2(O)]2; 0.834 Po:S P2:S Po

Y3: 12(0) + J2(m) + IJnm l/v'3 = 1; 0.939 Po:S P3:S 1.034 Po

where

J2(n) =nt2+nl- ntn2 +3ni2

J2(m) = m\2 +ml- mtm2+ 3mi2

Jnm = nt( mt- ~2)+n2(m2- ~l) +3n t2mt2

n's and m's are, respectively, the nondimensional membrane and moment resultants, Pi is the
collapse load corresponding to the yield condition Yi, and Po is the exact collapse load. The
approximate condition Y t was also obtained by Rozenblium[28] who used the lower and upper
bound approach. Lukkunaprasit[9} arrived at Y2 for the axisymmetric case by means of some
physical and mechaniCal considerations and compared it to the exact von Mises condition given
by Hodge[23]. The bounds for the collapse loads were:

0.854 Po :S P2 :S Po.
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Since tbe lower bound is sligbtly greater than that obtained by Robinsonf27], Y2 will be slightly
more conservative for some deformation other than axisymmetric. More complicated higher
order approximate yield conditions have been studied [27], but will not be discussed here.

.5. NUMERICAL APPROACH TO NONLINEAR DYNAMIC PROBLEMS

Widely used direct integration operators in structural dynamics are the Houbolt[29J,
Newmark [30] and Wilson [31] operators. Their characteristics and unconditional stability cri
teria have been studied extensively with regard to their application to linear systems [30, 32-35].
Several A-stable methods for solving first order ordinary differential equations (o.d.e.) also
exist [35, 36], but are less often used by structural engineers. An implicit second order Runge
Kutta method, with characteristics identical to the trapezoidal rule when applied to linear
systems, will be employed in this study.

In applying integration operators to nonlinear systems, stability is governed not only by the
integration operator used, but also by the method used to treat the nonlinear terms, and to some
extent by the nature of the nonlinearity, e.g. geometric or material. In dealing with nonlinear
vibrations of elastic shells, Stricklin et al. [37] treated the nonlinear terms as pseudo-generalized
forces and used a linear extrapolation to obtain values at the end of the increment. Both the
Newmark ('Y = 1/2, fJ = 1/4) and Houbolt operators were investigated, and while the former was
found to be unstable, the large artificial damping inherent in the latter method maintained
stability. Wu and Witmerf38] employed a similar extrapolation procedure to solve for the
dynamic response of an elastic-plastic beam under impulsive loading and reported less
satisfactory results; even the Houbolt method ceased to maintain stability. Weeks [39]
employed a Newton-Raphson iteration technique together with the Houbolt and Newmark
methods for solving nonlinear problems and obtained very satisfactory results. However, all
nonlinear terms were included explicitly in the equations of motion, requiring excessive storage
for the Jacobian matrix generated by the Newton-Raphson procedure. Therefore, several
difficulties, namely those of numerical stability, storage requirements, and practicality, must be
resolved.

In the current state formulation it is convenient to decompose the equations of motion into a
system of first order o.d.e.; thus:

Mkv=kR-kh

kV =kei.

(5.1)

(5.2)

These equations, together with the constitutive relations (4.5), will be discretized using an
implicit second order Runge-Kutta method [35J, and the Newton-Rapbson iteration scheme will
be employed to solve the discretized algebraic equations.

To advance from the known state "k" to the next state "k + 1", iterations 1,2, ..., i, i + 1, ...
are performed, and the implicit Runge-Kutta scheme is applied to the equations of motion:

I k I k I k
f (IV Ih).M~- R+ R + h+ h=O
v, lit 2 2

where 41 is the time increment.
The residual is defined as:

j k iR+kR ih kh
f (iv ih).M..!.::.....!---+-+-
v , 41 2 2 (5.3)

which can be identified physically as the unbalanced nodal forces. With trial values lV, Ih the
residual will in general be nonzero. Tbe corrections Alv. 1+1V- IV and 41h == I+lh - Ih are sought
to make f.e+1v, i+lh) = 0 by applying the Newton-Raphson scheme. Thus,
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which, after introducing (5.3), yields:

Aiv = AtM- 1( - f v _ A;b).

As a first approximation Aih is taken as zero, equivalent to holding ib fixed and allowing the
velocity field to vary in such a way that the residual becomes zero.

By the procedures used before, the residual in the constitutive function is defined as:

(5.5)

in which the bar above a vector denotes the average values of the state H k" and the H i"th
iterate. The Newton-Raphson method is applied to (5.5) with the velocity field fixed, resulting
in [9]:

(5.6)

where
Cl = C2 = 2: c; = C2 = -I.

It can be shown that aj and a2 are positive, and that ala2> a2a;. It follows that the
determinant of the coefficient matrix of Ai m is nonzero and that an inverse exists. The in-plane
stress resultants can be integrated in a similar manner.

Finally, the integration of (5.2) is simply

No storage problems are created by applying the Newton-Raphson procedure to the global
"linear" equations of motion (5.1) because (5.4) can be solved by Gaussian elimination or by
other convenient alternative procedures. For nonlinear systems of equations (4.1) and (4.5) the
finite element discretization technique allows the Newton-Raphson scheme to be applied
locally at each section. Consequently, very little storage is required for theJacobian matrix as is
evident from (5.6).

A local stabilizing scheme for numerical solution of nonlinear equations
To stabilize the numerical integration of the system of nonlinear equations, a local step size

subdivision stabilizing scheme is used in conjunction with the numerical integration method just
described. Beginning with the incremental velocity predicted by (5.4), the residual in the
constitutive functions and the change in internal stress at each Gauss station are calculated
element-by-element. If the residual is large, the time step is subdivided into n equal sub
divisions of duration At. == At/n for that Gauss station of the element (Fig. 3). If it is assumed
that the variation of velocity within the time step is linear, then:

Given the velocity field, the numerical procedures discussed previously can be applied suc
cessively to each subdivision to determine the internal stresses at the end of each subdivision.
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Fig. 3. Local time step subdivision scheme. (a) Velocity field. (b) Constitutive relation.

Where the material is elastic, the original procedure with large time steps is used. The
internal stresses are then integrated numerically throughout the element to obtain the element
nodal forces. By summing over all elements, the structural nodal forces are obtained and again
introduced into the equations of motion, providing an improved solution i+I V• Iteration
continues until convergence is achieved.

To illustrate the effectiveness· of the local step size subdivision procedure, a single-story
shear building subjected to base excitation as shown in Fig. 4 was considered. The columns are
made of an elastic-perfectly plastic material and the column shear-displacement relation is
approximated by an elastic-viscoplastic model:

. . Fo (F)nF=ku-- -
T Fo

where F is total story shear, Fo is static yield value of total story shear, k is total elastic shear
stiffness, u is story displacement and nand T are material parameters. A large value, 51, was
used for n and a value of 0.1 sec was assumed for T.

A very small time step of approximately 1/74 TI where T1 is the fundamental period for
linear elastic vibration was used without applying the subdivision procedure and the scheme
performed satisfactorily. Although some extremely small oscillations occurred in the story
shear-displacement response during yielding (Fig. 5), the plot of story displacement vs time
(Fig. 4) reveals that the steady state was accurately reproduced. This solution will be referred to
as a converged solution.

TI • FUNDAMENTAL PERIOD OF LINEAR VIBRATION -0.452 SEC.
A - 10 FT.lSEc.2

P '12 RAD.lSEC.
Uo • YIELD DISPLACEMENT' 0.1 FT.

•• $OOIC

r==f"n·51
T- 0.1

.J 2.0

":>
..=
z

'"2 1.0

'"~
..J
0.
(/l

C 0 f-oo:;:---.L--f--..L.....-+.l-.--f-...l---Jl---------jf-L---4--...J
o
'"N
:J
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2 -1.0
II:

o 1'------;:----::1=------::!=---.l:----~--..L--..L--..JZ 0

Al • 0.006125 SEC.• WIO SUBDIVISION
4AI • WIO SU80lVISION
4A1 =WI SUBDIVISION

Fig. 4. Dynamic analysis of a shear building using a viscoplastic model-test of subdivision stabilizing
scheme.
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Fig. 5. Story shear-displacement diagram.

A time step four times the previous value was then used, still without using the subdivision
procedure. The scheme functioned perfectly for the first 16 steps, during which the story shear
was below the static yield level. During yielding, however, spurious oscillation occurred (see
Fig. 5). Although the solution did not blow up, accuracy in the yielding regime was greatly
reduced. Moreover, for problems such as impulsive loading of structures, it would be difficult to
interpret the internal stress vs time response because real oscillations occur for such problems.

The difficulties described above were overcome by applying the subdivision procedure. With
the large time step size as before and by subdividing the local time step into three once the
constitutive residual exceeded 1.8, spurious oscillation was eliminated and the resulting solution
compared very favorably with the converged solution (less than 4% maximum error). The error
in peak displacement did not increase with time, indicating that the scheme did not introduce
damping, either positive or negative. As in the linear case, a small error in phase occurred. It is
evident from the story shear vs displacement diagram that a time step of 1/19 Tt was rather
large. Only three steps were required to stress the structure from a small negative shear force to
a positive yield level, but the subdivision scheme maintained accuracy and stability.

6. NUMERICAL EXAMPLES

The incremental formUlation developed herein was used to solve several dynamic problems
in order to: (a) test the applicability and accuracy of the formulation, (b) develop an
understanding of the behavior of the structural systems studied and (c) determine effects of
mathematical modeling on structural response.

Impulsively loaded clamped circular plates
Several tests described in Ref. [40]were simulated using the present finite element model. In

these experiments, the plates were clamped to prevent rotation but not radial displacement, and
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Table I. Material properties and plate geometry

Material Static yield Specific Plate Plate
stress, psi. 00 gravity radius thickness

AL 6061-T6 42,000 2.7 4.0 in. 0.251 in.

H.R. Steel A 285 41,080 7.8 4.0 0.245
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were subjected to uniformly distributed impulses. The material properties and geometries of the
aluminum and mild steel plates are given in Table 1.

Five elements were used to discretize half the plate. Geometric changes were accounted for
in all analyses.

Idealization of materials
The aluminum alloy was assumed to be relatively rate insensitive. The material constants

were: n =25, l' =0.00577 sec, yielding, Ud =1.06 lTo at E= 700 sec-I.
The choice of constants for the steel was difficult since dynamic stress-strain rate tests were

not carried out. Available experimental data with large variances had therefore to be used (see
discussion by Perzyna[7]). Furthermore there is no standard value for strain-rate during a static
test, so that the so-called "static yield stress" may differ among various laboratories. Therefore,
two sets of material constants were chosen so that a wide range of dynamic stress-strain rate
relationships could be represented (see Fig. 6): (1) n =17, T =25,205 sec, providing a good fit to
Manjoine's curve [41], and (2) n =' 7, l' = 0.75 sec, approximating the experimental curve obtained
by Clark and Duwez at low and medium strain rates[42).

Due to the difference in order of nand m in the yield function YF2, the resulting
constitutive model is more rate sensitive in bending when applied to rate-dependent materials.
Therefore, the yield function YF\ = lin) +J2(m) was used in all analyses but one.

3 n =17, T" 25,205 SEC.

o 100 200 500 600

Fig. 6. Uniaxial dynamic yield stress-strain rate curves.

Idealization of impulsive loading
The applied impulse was idealized as a high pressure acting over a short duration tp such that

the product ptp equaled the impulse. A very smaD pulse duration of 15 p,s was used, based on
the time required for the detonation at the center to reach the edge of the plate[40]. An
equivalent pressure of more than 20 times the static collapse load (ps) was applied. According
to Florence[43], an ideal impulse is closely approximated for large values of pIps.

Some numerical aspects
The loading condition described above constitutes a rigorous test of the numerical schemes.

Due to the high intensity and short duration of the pulse, yielding began almost instantaneously
and higher mode response was significant. To capture the rapidly changing response with
sufficient accuracy, a small time step of 3 p,s was used. However, the time step should be
increased once the fundamental mode becomes predominant. To prevent spurious oscillations in
integrating the constitutive equations during time step changes, the subdivision procedure was
employed. In one case, the time step was increased to 40 p,s, about 1/13 the fundamental period
of nonlinear vibration estimated from the free oscillation response, with satisfactory results.
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Subdivisions were used whenever the value of the yield function exceeded 0.8. Two to four
subdivisions sufficed.

Numerical results
(a) AI. plates (relatively rate insensitive). Two magnitudes of impulse were investigated,

namely I = 0.180 and 0.228 psi-sec. The permanent deflection was estimated from the mean
position of the free oscillation and compared to the experimental results [40] in Fig. 7 with very
good agreement. The final plate profile for I = 0.180 psi-sec is shown in Fig. 8, The plate model
was stiffer than the actual structure due to the approximation inherent in the stress resultant
formulation and the coarse mesh discretization. The central deflection-time response for 100
integration steps is plotted in Fig. 9. During oscillation, the peak amplitude was reduced due to
dissipation of plastic energy near stress reversals. Although the mechanism of deformation was
extremely complex due to factors such as higher mode participation and interaction of
membrane forces and bending moments, a general understanding of the mechanism can be
gained by examining the variation of yield function values along the plate radius at different
times (Fig. 10). Immediately after the impulse, plastic regions formed in the vicinity of
rIa = 0.81 and I (support). These regions will be identified as negative and positive
plastic regions according to the sign of the meridional moment. The rest of the plate re
mained elastic. Progressively, the plastic zone at the support spread and the negative plastic
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region moved toward the center, with an elastic region in between. The second phenomenon is
analogous to the traveling plastic hinge of rigid-plastic analyses. It was not until t = 155 JlS
(t"max = 255 Jls), when the entire plate had yielded, that general unloading occurred due to
the contribution of membrane forces that had increased with increasing deflection. While the
plate oscillated, a major portion remljined elastic except for a small region near the support that
was close to. the yield level during reversals of the velocities. The plastic zones were highly
localized for a considerable period of time while plastic deformation occurred. Loading and
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unloading occurred in these zones due to the participation of higher modes that cannot be
considered in rigid-plastic analyses.

(b) Steel plates (rate sensitive). The permanent central deflections for 1=0.206 and 0.379
psi-sec are shown in Fig. 7. The correlation with experimental data is not as good as for the
perfectly plastic case because the response of viscoplastic materials depends on the idealiza
tion of ad - E behavior of the material over the entire range of strain rate during deformation.
During the period of increasing deflection, strain rates were high (of themagnitllde 3<10
1000 sec-I) due to the high initial kinetic energy of the plate after the impulse was applied. Part
of this energy was dissipated by plastic work so that free oscillation followed with lower strain
rates (less than 100 sec-I). If, for instance, the idealized dynamic yield stress is too high at some
strain rate, then plastic flow will occur for higher stresses. Consequently, the material model
will be too stiff and less deflection will result, as demonstrated in the plots of permanent central
deflection as a function of time for the two material idealizations (Fig. 11). The lower O'd - Ecurve
(n = 7, T = 0.75 sec) resulted in a peak deflection 1.14 times that for the higher curve (n = 17,
T:=; 25,205 sec). Furthermore, the amplitude of oscillation about the mean position was greater for
the latter, indicating, as would be expected, less plastic dissipation.

Due to the problem associated with YF2 as discussed earlier, the material parameters were
selected from a pure-bending test. Thus, in order to fit the (n = 7, T = 0.75 sec) curve in Fig. 6, n
and T were taken as 14 and 0.75 sec, respectively, when YF2 was used. The resulting permanent
deflection (Fig. 7) was, as would be expected, greater by approximately 15% than the value
predicted using YF1•

Impulsively loaded shallow spherical shells
Shallow spherical shells with identical thickness, horizontally projected diameter, and

boundary conditions as the circular plates treated previously were subjected to a uniform radial
impulse with a magnitude of 0.379 psi-sec (Fig. 12). The material behavior was assumed to be
characterized by the (n =7, T = 0.75 sec) curve in Fig. 6. The idealization of impulses and time
steps used in the plate problem were again assumed. Four shells with A= 1.5, 3.0, 4.23 and 8.16
were investigated (A = a2/Rh where 2a is equal to shell diameter, R is the radius of -curvatUre
and h is shell thickness), corresponding to half subtended angles (a) of 5;27, 10.6, 15.0 and 30",
respectively. Ten elements were used, except for the 10.60 shell which was the first to be
analyzed using 8 elements. Changes in geometry were considered.

An integration time step as large as 20,."s, approximately 1/20 of the fundamental period of
nonlinear vibration (TI) for the 300 spherical shell, was used. To verify the accuracy of the
solution, an analysis was performed with very small time steps on the order of 1/200 Tlfor the
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300 shell. Resulting solutions are shown in Figs. 13 and 14. The central deflection increased
slightly with smaller time steps. The maximum deflection differed by about 7%. Of the stress
resultants, the meridional moment near the center fluctuated the most and was chosen for
comparison. The agreement was generally good except during the early stage of response
(about 3 times the pulse duration) at which very high-frequency modes prevailed. However, this
result is not significant since the maximum moment associated with lower modes was predicted
quite accurately using the larger time steps.

The predicted permanent central deflections are plotted in Fig. 15 with those for a circular
plate. In contrast to what might have been expected, a very shallow shell (a <approximately
l~) underwent a deflection larger than that for a circular plate. This result can be explained as
follows. A very shallow shell derives a major portion of load-carrying capacity from bending
action. During the initi;l1 stage of response, however, such a shell is a softening structure due to
the prevailing compressive membrane stress field. Only after membrane tensile stresses develop
does the shell begin to stiffen due to membrane effect. On the other hand, a flat plate will
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Fig. 13. Central deflection vs time for small and large time steps.
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exhibit membrane strengthening behavior from the beginning. Therefore, a very shallow shell
will deflect more under an identical loading. However. for deeper shells, shell action increas
ingly predominates and less deflection occurs.

7. CONCLUSIONS

The ability of the stress resultant finite element formulation to predict perfectly plastic
collapse loads and elastic-plastic dynamic response of thin plates and shells of revolution has
been demonstrated. Due to the inherent approximation introduced by the stress resultant
formulation and the constitutive relation, the model is somewhat stiff in the elastic-partially
plastic regime, but when plastic deformation predominates-the case when energy input is
several times elastic strain energy of a structure-the stress resultant approach provides very
satisfactory results.

The nonlinear etastic-viscoplastic model very effectively approximates elastic-perfectly
plastic behavior when appropriate material parameters are chosen. In viscoplastic analysis,
strain rate is extremely important. In structural dynamics, especially where impulsive loads or
impacts are involved. strain rates can vary over a wide range, and predicted response will
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depend on how well the constitutive model represents the actual (nonlinear) dynamic behavior
of the material over the spectrum of strain rates involved. The nonlinear constitutive relation
used in this study is simple, easy to use, and approximates dynamic yield stress-strain rate
behavior reasonably well over a considerable range of strain rate.

An advantage of the approach used in the present stress resultant formulation is that only
the value of the yield function need be known. Any yield condition may theoretically be used.
However, in dynamic problems we find that the use of a homogeneous yield function eliminates
apparent rate effects that are introduced when a nonhomogeneous yield function is used.

The example problems were a rigorous test of the numerical integration scheme, an implicit
Runge-Kutta scheme with Newton-Raphson iteration, and the local time step subdivision
procedure that were developed to improve the efficiency of the approach. These procedures
were found to be very effective in handling the nonlinear constitutive relations. Predicted
response was accurate even when very large time steps were used. No numerical damping was
observed, but a small period error did occur. A computational advantage afforded by the local
time step subdivision procedure is that it applies only to those elements currently yielding. The
original time step is retained for all other elements during integration of the equations of
motion. During a change in time step size, the procedure was effective in suppressing
oscillations. This local time step subdivision concept should be valuable in the conventional
plasticity formulations as well since it allows the history-dependent response of materials to be
traced with greater accuracy.

Although not studied in detail, a rough comparison of computational time required to solve a
typical problem revealed that for the same degree of accuracy. the present formulation required
approximately one-half as much time as a conventional stress component finite element
formulation using perfectly plastic theory. Furthermore, the formulation is readily applicable to
analyses of nonlinear creep problems since the form of the constitutive relations would remain
the same. Shearing effects can be included in both the kinematic of deformation and yield
conditions, so that moderately thick shells could be analyzed. The constitutive relations could
be modified to include strain-hardening and thermal effects. To extend the method to large
displacement analysis would require only slight modifications to incorporate appropriate
constitutive relations for finite deformation and to account for the effects of geometric changes
in calculating nodal forces. The simplicity, versatility, and accuracy of the formulation make it
attractive for use in design .offices as well as in research.
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